An action thriller by Jock Miller


Fossil fuel has an ageless affinity with dinosaurs. To create oil, dinosaurs died.


purchase on Amazon.com





The perfect energy storm is sweeping over the United States: Japan’s Fukushima nuclear plant meltdown has paralyzed nuclear expansion globally, BP’s Gulf of Mexico oil spill has stalled deep water drilling, Arab oil countries are in turmoil causing doubt about access to future oil, the intensity of hurricanes hitting the Gulf’s oil rigs and refineries has intensified due to global warming, and the nation’s Strategic Oil Supply is riding on empty.

As the energy storm intensifies, the nation’s access to Arab oil, once supplying over sixty percent of our fossil fuel, is being threatened causing people to panic for lack of gas at the pumps, stranding cars across the country and inciting riots.


The U.S. Military is forced to cut back air, land, and sea operations sucking up 58% of every barrel of oil to protect the nation; U.S. commercial airlines are forced to limit flights for lack of jet fuel; and businesses are challenged to power up their factories, and offices as the U.S. Department of Energy desperately tries to provide a balance of electric power from the network of aged power plants and transmission lines that power up the nation.

The United States must find new sources of domestic fossil fuel urgently or face an energy crisis that will plunge the nation into a deep depression worse than 1929.

The energy storm is very real and happening this very moment. But, at the last moment of desperation, the United States discovers the world’s largest fossil fuel deposit found in a remote inaccessible mountain range within Alaska’s Noatak National Preserve surrounding six and a half million acres.

Preventing access to the oil is a colony of living fossil dinosaurs that will protect its territory to the death.

Nobody gets out alive; nobody can identify the predator--until Dr. Kimberly Fulton, Curator of Paleontology at New York’s Museum of Natural History, is flown into the inaccessible area by Scott Chandler, the Marine veteran helicopter pilot who’s the Park’s Manager of Wildlife. All hell breaks loose when Fulton’s teenage son and his girlfriend vanish into the Park.


Will the nation’s military be paralyzed for lack of mobility fuel, and will people across America run out of gas and be stranded, or will the U.S. Military succeed in penetrating this remote mountain range in northwestern Alaska to restore fossil fuel supplies in time to save the nation from the worst energy driven catastrophe in recorded history?

______________________________________________________________________________________________________________________________________


Wacky Forms of Alternative Energy

Reprocessing Coffee Grounds into Biodiesel


 

That morning cup of Joe that helps fuel us for the day ahead could soon also help propel trucks as well. In 2009, University of Nevada-Reno engineering professor Mano Misra, known around the lab for his coffee consumption, noticed the sheen of oil floating on top of a cup of brew that had cooled. A light bulb went off in Misra's caffeinated brain, and he asked a couple of students to work on a project to investigate whether coffee oil could be a feedstock for biodiesel.

The students determined that, depending on the particular bean used in the brew, coffee grounds can contain as much as 20 percent oil, and that it has an unusually high oxidative stability (which means it won't break down when exposed to oxygen and therefore gunk up fuel lines). They subsequently developed a method to remove the sulfur found in coffee biodiesel, which comes from the volcanic soils in the mountainous regions where coffee generally is grown. The resulting fuel was sufficient to meet the standards set by ASTM International, an international testing organization, for biodiesel.

The researchers estimate that if all the waste grounds generated by the world's coffee drinkers were gathered and reprocessed, the yield would amount to 2.9 million gallons of diesel fuel each year. Alternatively, the coffee grounds could be converted to fuel pellets. If all of the leftover grounds from Starbucks were reprocessed, they would produce 89,000 tons of such fuel pellets annually, enough to generate millions of dollars in revenue for the coffee-shop chain, as well as help counter rising fuel costs for trucking companies [source: Schill].

Read more


Inside China's Energy Machine

Opening the Shale Gas Valve


Photograph from Reuters

worker checks valves on a natural gas appraisal well at a China Petroleum & Chemical Corporation facility in Langzhong, Sichuan Province. The province holds some of China's largest stores of natural gas.

Also known as Sinopec, China Petroleum is one of the largest state-owned energy companies in China, and its gas pipelines span more than 2,825 miles (4,545 kilometers) across the country.

Last year, Sinopec reportedly produced nearly 17 percent more natural gas, and discovered more than 80 percent more natural gas reserves, than it did in 2010. But it's looking for growth beyond China. Sinopec bought a one-third stake in five exploratory shale gas fields in the United States last month as part of a $2.2 billion deal with Oklahoma City-based Devon Energy. Devon pioneered the horizontal drilling technology, combined with hydraulic fracturing, that has unlocked vast unanticipated stores of natural gas from shale formations across the United States. Such a deal gives Sinopec the opportunity to import the made-in-the-USA shale gas technology.

Read more 

Edward Hitchcock's fossil footprints

Footprints in New England, 1858 

 


Edward Hitchcock was professor of geology at Amherst College in Massachusetts when a colleague wrote him about a stone slab he had found that contained large footprints. Hitchcock was immediately intrigued, and within a year, in 1836, he published his first paper about the stone footprints of the Connecticut Valley. He published a number of further articles in the ensuing two decades, amassed quite a collection of footprint-bearing slabs for a museum at his college, and finally reviewed the entire field in this sumptuous study of 1858. Hitchcock called his new science "ichnology," a shortening of his original term, "ichnolithology."

The work has sixty lithographs, many of them mere line drawings of tracks, but with an equal number depicting the slabs themselves with almost photographic realism. By far the most charming plate is the first one, a chromolithograph that depicts the Moody Footmark Quarry in South Hadley. It shows the site where Pliny Moody had discovered the very first fossil tracks in 1802; Moody himself helped prepare the sketch from which this lithograph was made. We reproduce a detail of this large print.

We now know that nearly all of the prints that Hitchcock studied and collected were made by Triassic dinosaurs. Hitchcock, however, never entertained this idea, for good reason: the prints were made by large bipeds, and at the time, dinosaurs were thought to be quadrupedal. Hitchcock instead believed that these were the footprints of large birds. Ironically, in the very year of this publication, the first good evidence for bipedal dinosaurs was being discovered by Joseph Leidy in New Jersey.


This was Edward Hitchcock's first published article on the fossil footprints of the Connecticut River Valley. He said that his attention was first called to the subject by James Deane, who send him some casts of impressions. He was soon able to obtain the red sandstone slabs themselves, and these were deposited in the Amherst College cabinet, where they would soon be joined by samples from other localities. Hitchcock described most ot these samples in his article.

Included with the article was a folding plate with twenty-four figures of his collected tracks, which Hitchcock was convinced were made by birds. We show here a detail from this plate.



Source

Hitchcock, Edward. "Ornithichnology. Description of the Foot marks of Birds, (Ornithichnites) on new Red Sandstone in Massachusetts," in: American Journal of Science, vol. 29 (1836), pp. 307-340. This work is part of our History of Science Collection, but it was NOT included in the original exhibition.

Hitchcock’s Primeval Birds

Paleontologist Edward Hitchcock was one of the first dinosaur track experts, but why did he insist that birds left the footprints


Edward Hitchcock was one of America’s first dedicated dinosaur paleontologists. He just didn’t know it. In fact, during the latter part of his career, he explicitly denied the fact. To Hitchcock, the tracks skittering over red sandstone in the Connecticut Valley were the marks of prehistoric birds from when the Creation was new. Hitchcock could not be dissuaded. As new visions of dinosaurs and the notion of evolution threatened to topple his life’s work, the Amherst natural theologian remained as immutable as the fossil footprints he studied.

Hitchcock was not the first to wonder about the prehistoric imprints. Members of the Lenape, a Native American group in Canada and the northeastern United States, had seen the bizarre, three-toed tracks and ascribed them to monsters and other beings. These were the footsteps of creatures that ruled the world before humans came to dominance. European settlers and their descendants had to stretch their mythology a little more to accommodate the tracks. Some thought such tracks might have been left by Noah’s raven after the biblical deluge, although many simply called them “turkey tracks” and apparently were little concerned with where they had come from.

It wasn’t until 1835 that James Deane, a doctor with a curiosity for natural history, found out about a sample of the peculiar tracks near Greenfield, Massachusetts. He knew that they represented prehistoric organisms, but he wasn’t sure which ones. He wrote to Hitchcock, then a geology professor at Amherst, to inquire about what could have left such markings in stone. At first Hitchcock didn’t believe Deane. There might be some quirk of geological formation that could have created track-like marks. But Deane was persistent. Not only did he change Hitchcock’s mind, but the geologist became so enthusiastic that he quickly became the most prominent expert on the tracks—a fact that frustrated Deane and led to tussles in academic journals over who really was the rightful discoverer of the Connecticut Valley’s lost world.

Hitchcock began publishing about the peculiar trace fossils in 1836. He was confident from the very start that they must

have been created by prehistoric birds. (He was so enthused by the idea he even wrote poetry about the “sandstone birds.”) No variety of creature matched them better. The word “dinosaur” had not even been invented yet; the British anatomist Richard Owen would establish the term in 1842. The few dinosaurs that had been found, such as Iguanodon, Megalosaurus and Hylaeosaurus, were known only from paltry remains and all were believed to have been enormous variations of lizards and crocodiles. Dinosaurs were a poor fit for the tracks, and became even worse candidates when Owen gave them an anatomical overhaul. Owen not only named dinosaurs, he re-branded them as reptiles with mammal-like postures and proportions. The huge sculptures of the Crystal Palace exhibition, created with the help of artist Benjamin Waterhouse Hawkins, are a testament to Owen’s view of dinosaurs as reptiles that had taken on the anatomical attitudes of rhinoceros and elephants.

But Owen and other paleontologists did not agree with Hitchcock’s interpretation. They argued that the tracks could have been made by some unknown variety of amphibian or reptile. This was not so much because of the anatomy of the tracks—anyone could see that they were made by creatures with bird-like feet—but because no one thought that birds could have lived at so ancient a time or grown large enough to make the biggest, 18-inch tracks Hitchcock described. Even though early 19th century paleontologists recognized that life changed through the ages, they believed there was a comprehensible progression in which so-called “higher” types of creatures appeared later than others. (Mammals, for example, were thought to have only evolved after the “Secondary Era” when reptiles ruled since mammals were thought to be superior to mosasaurs, ichthyosaurs, and other creatures of that middle time.)
 
Hitchcock remained steadfast, and his persistence was eventually rewarded with the discovery of the moa. These huge, flightless birds recently lived on New Zealand—they were wiped out more than 500 years ago by humans—and in 1839 Richard Owen rediscovered the birds through a moa thigh bone. He hypothesized that the bone must have belonged to a large, ostrich-like bird, and this idea was soon confirmed by additional skeletal bits and pieces. Some of these ratites stood over nine feet tall. When the news reached Hitchcock in 1843, he was thrilled. If recent birds could grow to such sizes, then prehistoric ones could have been just as large. (And, though Hitchcock died before their discovery, preserved moa tracks have a general resemblance to some of the largest footprints from the Connecticut Valley.) Opinion about the New England tracks quickly changed. There was no longer any reason to doubt Hitchcock’s hypothesis, and paleontologists hoped that moa-like bones might eventually be found to conclusively identify the trackmakers.

Lacking any better hypotheses, Hitchcock prominently featured his avian interpretation of the three-toed tracks in his 1858 book The Ichnology of New England. It was a gorgeous fossil catalog, but it also came at almost precisely the wrong time. Gideon Mantell, the British doctor and paleontologist who discovered Iguanodon, was beginning to wonder if some dinosaurs primarily walked on their hind limbs in a bird-like fashion, and the Philadelphia polymath Joseph Leidy described Hadrosaurus, a dinosaur certainly capable of bipedal locomotion on account of having shorter forelimbs than hindlimbs, the same year that Hitchcock’s monograph came out. Dinosaurs were undergoing another major overhaul, and the few that were known at the time were being recast as relatively bird-like creatures. Even worse for Hitchcock, the following year another student of the Connecticut Valley tracks, Roswell Field, reinterpreted many of the footprints and associated traces as being made by prehistoric reptiles. Especially damning was the fact that deep tracks, left when the creatures sunk into the mud, were sometimes associated with drag marks created by a tail. Hitchcock’s tableau of ancient Massachusetts moas was becoming increasingly unrealistic.

If Hitchcock ever doubted his interpretation, he never let on. He reaffirmed his conclusions and modified his arguments in an attempt to quell dissent. In his last book, A Supplement of the Ichnology of New England, published in 1865, a year after his death, Hitchcock used the recently discovered Jurassic bird Archaeopteryx as a way to save his interpretation. Tail drags were no obstacle to the bird hypothesis, Hitchcock argued, because Archaeopteryx was generally regarded as being the primordial bird despite having a long, reptile-like tail. Perhaps such a bird could have been responsible for the trace fossils Hitchcock called Anomoepus, but the tail drags left by the animals that dwelled in Jurassic New England were also associated with tracks indicating that their maker walked on all fours. In response, Hitchcock cast Archaeopteryx as a quadrupedal bird—a representative of a new category different from the classic, bipedal bird tracks he had promoted for so long.

Other paleontologists took a different view. If Archaeopteryx looked so primitive and lived after the time when the red Connecticut sandstone was formed, then it was unreasonable to think that more specialized, moa-like birds created Hitchcock’s tracks. Furthermore, a few bones found in a Massachusetts quarry of roughly the same age in 1855 turned out to belong to a dinosaur—a sauropodomorph that Othniel Charles Marsh would later name Anchisaurus. The bird bones never turned up, and all the while dinosaur fossils were becoming more and more avian in nature. By the 1870s the general paleontological opinion had changed. New England’s early Jurassic was not filled with archaic birds, but was instead home to dinosaurs which were the forerunners of the bird archetype.

Our recent realization that birds are the direct descendants of one group of coelurosaurian dinosaurs has led some of Hitchcock’s modern day fans to suggest that he was really right all along. In an essay for the Feathered Dragons volume, paleontologist Robert Bakker extolled Hitchcock’s scientific virtues and cast the geologist’s avian vision for the tracks as essentially correct. Writer Nancy Pick, in her 2006 biography of the paleontologist, wondered, “What if Hitchcock clung to his bird theory because he was right?” But I think such connections are tenuous—it is a mistake to judge Hitchcock’s work by what we have come to understand a century and a half later.



Read more