An action thriller by Jock Miller


Fossil fuel has an ageless affinity with dinosaurs. To create oil, dinosaurs died.


purchase on Amazon.com





The perfect energy storm is sweeping over the United States: Japan’s Fukushima nuclear plant meltdown has paralyzed nuclear expansion globally, BP’s Gulf of Mexico oil spill has stalled deep water drilling, Arab oil countries are in turmoil causing doubt about access to future oil, the intensity of hurricanes hitting the Gulf’s oil rigs and refineries has intensified due to global warming, and the nation’s Strategic Oil Supply is riding on empty.

As the energy storm intensifies, the nation’s access to Arab oil, once supplying over sixty percent of our fossil fuel, is being threatened causing people to panic for lack of gas at the pumps, stranding cars across the country and inciting riots.


The U.S. Military is forced to cut back air, land, and sea operations sucking up 58% of every barrel of oil to protect the nation; U.S. commercial airlines are forced to limit flights for lack of jet fuel; and businesses are challenged to power up their factories, and offices as the U.S. Department of Energy desperately tries to provide a balance of electric power from the network of aged power plants and transmission lines that power up the nation.

The United States must find new sources of domestic fossil fuel urgently or face an energy crisis that will plunge the nation into a deep depression worse than 1929.

The energy storm is very real and happening this very moment. But, at the last moment of desperation, the United States discovers the world’s largest fossil fuel deposit found in a remote inaccessible mountain range within Alaska’s Noatak National Preserve surrounding six and a half million acres.

Preventing access to the oil is a colony of living fossil dinosaurs that will protect its territory to the death.

Nobody gets out alive; nobody can identify the predator--until Dr. Kimberly Fulton, Curator of Paleontology at New York’s Museum of Natural History, is flown into the inaccessible area by Scott Chandler, the Marine veteran helicopter pilot who’s the Park’s Manager of Wildlife. All hell breaks loose when Fulton’s teenage son and his girlfriend vanish into the Park.


Will the nation’s military be paralyzed for lack of mobility fuel, and will people across America run out of gas and be stranded, or will the U.S. Military succeed in penetrating this remote mountain range in northwestern Alaska to restore fossil fuel supplies in time to save the nation from the worst energy driven catastrophe in recorded history?

______________________________________________________________________________________________________________________________________


How did feathered dinosaurs take to the air?


Archaeopteryx had a wing that was different from that of modern birds, and, as seen here, might have been a glider more than a powered flyer. Art by Carl Buell, courtesy of Nicholas Longrich.



Paleontologists have been investigating and debating this essential aspect of avian evolution for over a century. Indeed, there have been almost as many ideas as they have been experts, envisioning scenarios of dinosaurs gliding through trees, theropods trapping insects with their feathery wings and even aquatic Iguanodon flapping primitive flippers as flight precursors (I didn’t say that all the ideas were good ones). The biomechanical abilities of bird ancestors and their natural history has always been at the center of the debate, and a new Current Biology paper adds more fuel to the long-running discussion.

At present, hypotheses for the origin of avian flight typically fall into one of two categories. Either bird ancestors accrued the adaptations necessary for flight on the ground and, through evolutionary happenstance, were eventually able to take off, or small tree-dwelling dinosaurs used their feathery coats to glide between trees and, eventually, flapped their way into a flying lifestyle. There are variations on both themes, but feathers and the characteristic avian flight stroke are at the core of any such scenario. In the case of the new paper, Yale University paleontologist Nicholas Longrich and colleagues draw from the plumage of early bird Archaeopteryx and the troodontid Anchiornis to examine how feathers changed as dinosaurs started to fly.

In modern flying birds, Longrich and coauthors point out, the wing arrangement typically consists of “long, asymmetrical flight feathers overlain by short covert feathers.” This pattern creates a stable airfoil but also lets the flight feathers separate a little during the upstroke of a wing beat, therefore reducing drag. When the paleontologists examined the fossilized wings of Archaeopteryx and Anchiornis, they found different feather arrangements that would have constrained the flight abilities of the Jurassic dinosaurs.

Both prehistoric creatures had long covert feathers layered on top of the flight feathers. Anchiornis, in particular, appeared to have an archaic wing form characterized by layers of short, symmetrical flight feathers and similarly shaped coverts. Archaeopteryx showed more specialization between the flight feathers and the coverts but still did not have a wing just like that of a modern bird. As a result, Longrich and collaborators hypothesize, both arrangements would have stabilized the wing at the cost of increased drag at low speeds, making it especially difficult for Anchiornis and Archaeopteryx to take off. As an alternative, the researchers suggest that these dinosaurs might have been parachuters who jumped into the air from trees, which might hint that “powered flight was preceded by arboreal parachuting and gliding.”

The trick is determining whether Anchiornis and Archaeopteryx actually represent the form of bird ancestors, or whether the dinosaurs, like Microraptor, were independent experiments in flight evolution. At the Society of Vertebrate Paleontology conference in Raleigh, North Carolina last month, flight expert Michael Habib quipped that all that was needed to make dromaeosaurs aerially competent was the addition of feathers. If Habib is right, and I think he is, then there could have been multiple evolutionary experiments in flying, gliding, wing-assisted-incline-running and other such activities. There’s no reason to think that flight evolved only once in a neat, clean march of ever-increasing aerodynamic perfection. Evolution is messy, and who knows how many ultimately failed variations there were among flight-capable dinosaurs?

The three-step Anchiornis-Archaeopteryx-modern bird scenario of wing evolution fits our expectations of what a stepwise evolutionary pattern would look like, but, as the authors of the new paper point out, shifting evolutionary trees currently confound our ability to know what represents the ancestral bird condition and what characterized a more distant branch of the feathered dinosaur family tree. We need more feathery fossils to further investigate and test this hypothesis, as well as additional biomechanical and paleoecological information to determine whether such dinosaurs really took off from trees. We must take great care in distinguishing between what an organism could do and what it actually did, and with so much up in the air, the debate on the origin of flight will undoubtedly continue for decades to come.