An action thriller by Jock Miller


Fossil fuel has an ageless affinity with dinosaurs. To create oil, dinosaurs died.


purchase on Amazon.com





The perfect energy storm is sweeping over the United States: Japan’s Fukushima nuclear plant meltdown has paralyzed nuclear expansion globally, BP’s Gulf of Mexico oil spill has stalled deep water drilling, Arab oil countries are in turmoil causing doubt about access to future oil, the intensity of hurricanes hitting the Gulf’s oil rigs and refineries has intensified due to global warming, and the nation’s Strategic Oil Supply is riding on empty.

As the energy storm intensifies, the nation’s access to Arab oil, once supplying over sixty percent of our fossil fuel, is being threatened causing people to panic for lack of gas at the pumps, stranding cars across the country and inciting riots.


The U.S. Military is forced to cut back air, land, and sea operations sucking up 58% of every barrel of oil to protect the nation; U.S. commercial airlines are forced to limit flights for lack of jet fuel; and businesses are challenged to power up their factories, and offices as the U.S. Department of Energy desperately tries to provide a balance of electric power from the network of aged power plants and transmission lines that power up the nation.

The United States must find new sources of domestic fossil fuel urgently or face an energy crisis that will plunge the nation into a deep depression worse than 1929.

The energy storm is very real and happening this very moment. But, at the last moment of desperation, the United States discovers the world’s largest fossil fuel deposit found in a remote inaccessible mountain range within Alaska’s Noatak National Preserve surrounding six and a half million acres.

Preventing access to the oil is a colony of living fossil dinosaurs that will protect its territory to the death.

Nobody gets out alive; nobody can identify the predator--until Dr. Kimberly Fulton, Curator of Paleontology at New York’s Museum of Natural History, is flown into the inaccessible area by Scott Chandler, the Marine veteran helicopter pilot who’s the Park’s Manager of Wildlife. All hell breaks loose when Fulton’s teenage son and his girlfriend vanish into the Park.


Will the nation’s military be paralyzed for lack of mobility fuel, and will people across America run out of gas and be stranded, or will the U.S. Military succeed in penetrating this remote mountain range in northwestern Alaska to restore fossil fuel supplies in time to save the nation from the worst energy driven catastrophe in recorded history?

______________________________________________________________________________________________________________________________________


Flying Wind Turbines Reach for High-Altitude Power

Turbines Ready for Takeoff




Photograph courtesy Makani Power

Like the wing of a propeller plane without a cockpit, a Makani Airborne Wind Turbine stirs the air in a California field where it is being tested to capture high-altitude wind power.

Anyone who has climbed a mountain, a tower, or even a tall tree knows that winds get stronger at greater heights. There's less drag resistance from objects on the ground. That's why wind energy prospectors typically weld their expensive turbines to high towers, because the most important factor in power production is how fast the wind blows past the blades.

But what if turbines could reel in the power whirling above the reach of those tall towers?

Airborne wind energy pioneers, from North America to Italy and Australia, aim to find out. The technology is still in its infancy, although Makani's system—pictured above—has received notable backing from Google's philanthropic arm and the U.S. government. The concept also gained support in a new study published September 9 in the journal Nature Climate Change, which focused on the steady, fast high-altitude currents, and concluded that there's enough power in Earth's winds to be a primary source of near-zero-emission electric power as the global economy continues to grow through the 21st century.

The study found that wind turbines placed on Earth's surface could extract kinetic energy of at least 400 terawatts (trillion watts), while high-altitude wind power could extract more than 1,800 terawatts. The latter is about 100 times greater than the world's current power demand, the authors noted.

"The upshot is that airborne wind starts to look a lot like solar power," said study co-author Ken Caldeira, a senior climate researcher at Stanford University's Carnegie Institution for Science. "It's a resource that is large relative to human demand, and harvesting it has to do with economics and engineering, not fundamental limitations of the resource." (Of course, wind power ultimately can be called a form of solar power, too, because it's uneven heating by the sun that drives the winds.)

Caldeira and his colleagues, however, had the luxury in their theoretical study of not worrying about the practical challenges of deploying airborne wind turbines. Research and development being done by Makani Power and others is aimed at developing a cost-effective system to bring that high-flying energy down to Earth.


Read More