An action thriller by Jock Miller
Fossil fuel has an ageless affinity with dinosaurs. To create oil, dinosaurs died.
The perfect energy storm is sweeping over the United States: Japan’s Fukushima nuclear plant meltdown has paralyzed nuclear expansion globally, BP’s Gulf of Mexico oil spill has stalled deep water drilling, Arab oil countries are in turmoil causing doubt about access to future oil, the intensity of hurricanes hitting the Gulf’s oil rigs and refineries has intensified due to global warming, and the nation’s Strategic Oil Supply is riding on empty.
As the energy storm intensifies, the nation’s access to Arab oil, once supplying over sixty percent of our fossil fuel, is being threatened causing people to panic for lack of gas at the pumps, stranding cars across the country and inciting riots.
The U.S. Military is forced to cut back air, land, and sea operations sucking up 58% of every barrel of oil to protect the nation; U.S. commercial airlines are forced to limit flights for lack of jet fuel; and businesses are challenged to power up their factories, and offices as the U.S. Department of Energy desperately tries to provide a balance of electric power from the network of aged power plants and transmission lines that power up the nation.
The United States must find new sources of domestic fossil fuel urgently or face an energy crisis that will plunge the nation into a deep depression worse than 1929.The energy storm is very real and happening this very moment. But, at the last moment of desperation, the United States discovers the world’s largest fossil fuel deposit found in a remote inaccessible mountain range within Alaska’s Noatak National Preserve surrounding six and a half million acres.
Preventing access to the oil is a colony of living fossil dinosaurs that will protect its territory to the death.Nobody gets out alive; nobody can identify the predator--until Dr. Kimberly Fulton, Curator of Paleontology at New York’s Museum of Natural History, is flown into the inaccessible area by Scott Chandler, the Marine veteran helicopter pilot who’s the Park’s Manager of Wildlife. All hell breaks loose when Fulton’s teenage son and his girlfriend vanish into the Park.
Will the nation’s military be paralyzed for lack of mobility fuel, and will people across America run out of gas and be stranded, or will the U.S. Military succeed in penetrating this remote mountain range in northwestern Alaska to restore fossil fuel supplies in time to save the nation from the worst energy driven catastrophe in recorded history?
Energy in the Forces of Nature: Volcanoes: Too Hot to Capture
Photograph by Brynjar Gauti, AP
An ash cloud billows from southern Iceland's sub-glacial Eyjafjallajökull volcano on April 16, 2010, signaling an escape of the heat inside the Earth that is drawing renewed interest worldwide as an energy source.
Almost all of Iceland's building and water heating comes from geothermal energy, which also provides about a third of the nation's electricity. But nobody has figured out how to harness that energy safely when it breaks through the surface as an active volcano. That's too bad, because thermal emissions coming from Iceland's Eyjafjallajökull volcano in March 2010, during the first of two eruptions, quickly reached 1 gigawatt , and later peaked at 6 gigawatts, says Ashley Davies, a volcanologist at NASA's Jet Propulsion Laboratory in Pasadena, California.
One gigawatt is the capacity of a large power plant, like the Hudson Generating Station across the Hudson River from Manhattan in Jersey City, New Jersey, which serves 750,000 households with a mix of coal, natural gas, and oil. Six gigawatts is greater than the capacity of any U.S. electric plant except for the huge Grand Coulee hydroelectric plant.
And that's just a small portion of the total thermal output in the volcano's 2010 eruption. It does not account for mechanical energy—the accompanying earthquakes and explosive blasts—or additional heat in the erupting lava. NASA measured the volcano's thermal output using satellite imagery, which it also employs to gauge volcanoes elsewhere in the solar system. Some of those other-world volcanoes dwarf those on Earth, Davies adds, including one on the Jupiter moon Io whose 2001 eruption radiated 78 terawatts of heat. Think of that as 78 times the total capacity of all the power plants in the United States.
Over an hour, that would be equivalent to the energy in about 46 million barrels of oil— about half the amount consumed around the world every day.
Back at Iceland's Eyjafjallajökull, another part of the volcano underwent a much larger eruption in April 2010. That eruption occurred under an ice cap that hid much of its power from the NASA satellite, which still measured 60 megawatts of radiated power. Over the course of an hour, that would be equivalent to the energy output of 1,648 gallons (6,238 liters) of gasoline—the amount that an average U.S. motorist would have to buy over four years to fuel a car that drives 10,000 miles annually.
That eruption's interaction of lava with ice generated clouds of steam and ash that groun
Read More