An action thriller by Jock Miller


Fossil fuel has an ageless affinity with dinosaurs. To create oil, dinosaurs died.


purchase on Amazon.com





The perfect energy storm is sweeping over the United States: Japan’s Fukushima nuclear plant meltdown has paralyzed nuclear expansion globally, BP’s Gulf of Mexico oil spill has stalled deep water drilling, Arab oil countries are in turmoil causing doubt about access to future oil, the intensity of hurricanes hitting the Gulf’s oil rigs and refineries has intensified due to global warming, and the nation’s Strategic Oil Supply is riding on empty.

As the energy storm intensifies, the nation’s access to Arab oil, once supplying over sixty percent of our fossil fuel, is being threatened causing people to panic for lack of gas at the pumps, stranding cars across the country and inciting riots.


The U.S. Military is forced to cut back air, land, and sea operations sucking up 58% of every barrel of oil to protect the nation; U.S. commercial airlines are forced to limit flights for lack of jet fuel; and businesses are challenged to power up their factories, and offices as the U.S. Department of Energy desperately tries to provide a balance of electric power from the network of aged power plants and transmission lines that power up the nation.

The United States must find new sources of domestic fossil fuel urgently or face an energy crisis that will plunge the nation into a deep depression worse than 1929.

The energy storm is very real and happening this very moment. But, at the last moment of desperation, the United States discovers the world’s largest fossil fuel deposit found in a remote inaccessible mountain range within Alaska’s Noatak National Preserve surrounding six and a half million acres.

Preventing access to the oil is a colony of living fossil dinosaurs that will protect its territory to the death.

Nobody gets out alive; nobody can identify the predator--until Dr. Kimberly Fulton, Curator of Paleontology at New York’s Museum of Natural History, is flown into the inaccessible area by Scott Chandler, the Marine veteran helicopter pilot who’s the Park’s Manager of Wildlife. All hell breaks loose when Fulton’s teenage son and his girlfriend vanish into the Park.


Will the nation’s military be paralyzed for lack of mobility fuel, and will people across America run out of gas and be stranded, or will the U.S. Military succeed in penetrating this remote mountain range in northwestern Alaska to restore fossil fuel supplies in time to save the nation from the worst energy driven catastrophe in recorded history?

______________________________________________________________________________________________________________________________________


Energy in the Forces of Nature

Lightning: Brief Bolts of Energy



Photograph by Markus Mauthe, Iaif/Redux

Lightning bolts dance on the Colorado Plateau at Canyonlands National Park, Utah, in one of nature's most familiar energy displays.

Worldwide, lightning strikes the Earth an estimated 45 times a second.

The amount of energy released in one of those atmospheric electrical discharges can vary widely—from 100 megajoules to as high as 30,000 megajoules, says Don MacGorman, lightning expert with the U.S. National Oceanic and Atmospheric Administration. A typical range would be 1,000 to 5,000 megajoules, he says.

That would hardly be enough to transport anyone three decades across space-time, as the fictional Dr. Emmett Brown did when he harnessed a lightning bolt to fuel the time-traveling car he invented in the movie, Back to the Future. But it would be a blast sufficient to propel the average U.S. passenger car about 180 to 910  miles (290 to 1,450 kilometers), equivalent to the energy in about 8 to 38 gallons (30 to 144 liters) of gasoline.

The force that Dr. Brown called "1.21 jigawatts" was more like 280 to 1,390 kilowatt-hours, the amount used by the average U.S. household over about nine days at the low end to almost a month and a half at the high end.

The wide range of estimates for lightning's energy is due to its complexity. A flash develops initially in the cloud, then a channel begins approaching the ground in steps. Once it connects with the ground, a large current surge moves back up the channel in a process called a return stroke—responsible for most of the energy transferred to ground. What the eyes perceive as a single lightning flash is actually made up of several strokes of lightning, enough to last nearly a half second. If the gap between strokes is long enough, the lightning flash appears to flicker.

While brief, the voltage is intense enough to quickly heat the air to nearly 50,000°F (30,000°C). (In contrast, the surface of the sun is about 10,000°F, or 5,500°C.) The rapid expansion of the heated air generates a shock wave that is heard as thunder.

Although lightning strikes certainly can be deadly, their energy output pales when considered against forces of nature that have leveled cities and altered coastlines. Japan's 9.0-magnitude Tohoku earthquake and tsunami on March 11, 2011, was one of the more fearsome displays of nature's power, but scientists have also sought to measure the energy in volcanoes, wildfires, hurricanes, and the waves lapping against the shore.

Their calculations show that society's successes in developing geothermal, wind, and solar energy have captured but a minuscule fraction of nature's energy.



Read More —David Lagesse and Marianne Laelle